Tag Archives: Theoretical computer science

Computer Algorithms: Longest Increasing Subsequence


A very common problem in computer programming is finding the longest increasing (decreasing) subsequence in a sequence of numbers (usually integers). Actually this is a typical dynamic programming problem.

Dynamic programming can be described as a huge area of computer science problems that can be categorized by the way they can be solved. Unlike divide and conquer, where we were able to merge the fairly equal sub-solutions in order to receive one single solution of the problem, in dynamic programming we usually try to find an optimal sub-solution and then grow it.

Once we have an optimal sub-solution on each step we try to upgrade it in order to cover the whole problem. Thus a typical member of the dynamic programming class is finding the longest subsequence.

However this problem is interesting because it can be related to graph theory. Let’s find out how. Continue reading Computer Algorithms: Longest Increasing Subsequence

Computer Algorithms: Prim’s Minimum Spanning Tree


Along with the Kruskal’s minimum spanning tree algorithm, there’s another general algorithm that solves the problem. The algorithm of Prim.

As we already know the algorithm of Kruskal works in a pretty natural and logical way. Since we’re trying to build a MST, which is naturally build by the minimal edges of the graph (G), we sort them in a non-descending order and we start building the tree.

The algorithm of Kruskal

During the whole process of building the final minimum spanning tree Kruskal’s algorithm keeps a forest of trees. The number of trees in that forest decreases on each step and finally we get the minimum weight spanning tree.

A key point in the Kruskal’s approach is the way we get the “next” edge from G that should be added to one of the trees of the forest (or to connect two trees from the forest). The only thing we should be aware of is to choose an edge that’s connecting two vertices – u and v and these two shouldn’t be in the same tree. That’s all.

The Kruskal's Tricky Part

An important feature of the Kruskal’s algorithm is that it builds the MST just by sorting the edges by their weight and doesn’t care about a particular starting vertex.

In the same time there’s another algorithm that builds a MST – the algorithm of Prim designed by Robert Prim in 1957. Continue reading Computer Algorithms: Prim’s Minimum Spanning Tree

Computer Algorithms: Kruskal’s Minimum Spanning Tree


One of the two main algorithms in finding the minimum spanning tree algorithms is the algorithm of Kruskal. Before getting into the details, let’s get back to the principles of the minimum spanning tree.

We have a weighted graph and of all spanning trees we’d like to find the one with minimal weight. As an example on the picture above you see a spanning tree (T) on the graph (G), but that isn’t the minimum weight spanning tree!

A graph and a possible spanning tree
Continue reading Computer Algorithms: Kruskal’s Minimum Spanning Tree

Computer Algorithms: Minimum Spanning Tree


Here’s a classical task on graphs. We have a group of cities and we must wire them to provide them all with electricity. Out of all possible connections we can make, which one is using minimum amount of wire.

To wire N cities, it’s clear that, you need to use at least N-1 wires connecting a pair of cities. The problem is that sometimes you have more than one choice to do it. Even for small number of cities there must be more than one solution as shown on the image bellow.

General Wiring Problem

Here we can wire these four nodes in several ways, but the question is, which one is the best one. By the way defining the term “best one” is also tricky. Most often this means which uses least wire, but it can be anything else depending on the circumstances.

As we talk on weighted graphs we can generally speak of a minimum weight solution through all the vertices of the graph.

By the way there might be more the one equally optimal (minimal) solutions. Continue reading Computer Algorithms: Minimum Spanning Tree

Computer Algorithms: Shortest Path in a Directed Acyclic Graph


We saw how to find the shortest path in a graph with positive edges using the Dijkstra’s algorithm. We also know how to find the shortest paths from a given source node to all other nodes even when there are negative edges using the Bellman-Ford algorithm. Now we’ll see that there’s a faster algorithm running in linear time that can find the shortest paths from a given source node to all other reachable vertices in a directed acyclic graph, also known as a DAG.

Because the DAG is acyclic we don’t have to worry about negative cycles. As we already know it’s pointless to speak about shortest path in the presence of negative cycles because we can “loop” over these cycles and practically our path will become shorter and shorter.

Negative Cycles
The presence of a negative cycles make our atempt to find the shortest path pointless!

Thus we have two problems to overcome with Dijkstra and the Bellman-Ford algorithms. First of all we needed only positive weights and on the second place we didn’t want cycles. Well, we can handle both cases in this algorithm. Continue reading Computer Algorithms: Shortest Path in a Directed Acyclic Graph