Tag Archives: ineffective algorithm

Computer Algorithms: Topological Sort Revisited


We already know what’s topological sort of a directed acyclic graph. So why do we need a revision of this algorithm? First of all I never mentioned its complexity, thus to understand why we do need a revision let’s get again on the algorithm.

We have a directed acyclic graph (DAG). There are no cycles so we must go for some kind of order putting all the vertices of the graph in such an order, that if there’s a directed edge (u, v), u must precede v in that order.

Topological Sort

The process of putting all the vertices of the DAG in such an order is called topological sorting. It’s commonly used in task scheduling or while finding the shortest paths in a DAG.

The algorithm itself is pretty simple to understand and code. We must start from the vertex (vertices) that don’t have predecessors.

Topological Sort - step 1
Continue reading Computer Algorithms: Topological Sort Revisited

Computer Algorithms: Determine if a Number is Prime


Each natural number that is divisible only by 1 and itself is prime. Prime numbers appear to be more interesting to humans than other numbers. Why is that and why prime numbers are more important than the numbers that are divisible by 2, for instance? Perhaps the answer is that prime numbers are largely used in cryptography, although they were interesting for the ancient Egyptians and Greeks (Euclid has proved that the prime numbers are infinite circa 300 BC). The problem is that there is not a formula that can tell us which is the next prime number, although there are algorithms that check whether a given natural number is prime. It’s very important these algorithms to be very effective, especially for big numbers.


As I said each natural number that is divisible only by 1 and itself is prime. That means that 2 is the first prime number and 1 is not considered prime. It’s easy to say that 2, 3, 5 and 7 are prime numbers, but what about 983? Well, yes 983 is prime, but how do we check that? If we want to know whether n is prime the very basic approach is to check every single number between 2 and n. It’s kind of a brute force.


The basic implementation in PHP for the very basic (brute force) approach is as follows.

Unfortunately this is one very ineffective algorithm. We don’t have to check every single number between 1 and n, it’s enough to check only the numbers between 1 and n/2-1. If we find such a divisor that will be enough to say that n isn’t prime.

Although that code above optimizes a lot our first prime checker, it’s clear that for large numbers it won’t be very effective. Indeed checking against the interval [2, n/2 -1] isn’t the optimal solution. A better approach is to check against [2, sqrt(n)]. This is correct, because if n isn’t prime it can be represented as p*q = n. Of course if p > sqrt(n), which we assume can’t be true, that will mean that q < sqrt(n).

Beside that these implementations shows how we can find prime number, they are a very good example of how an algorithm can be optimized a lot with some small changes.

Sieve of Eratosthenes

Although the sieve of Eratosthenes isn’t the exact same approach (to check whether a number is prime) it can give us a list of prime numbers quite easily. To remove numbers that aren’t prime, we start with 2 and we remove every single item from the list that is divisible by two. Then we check for the rest items of the list, as shown on the picture below.


The PHP implementation of the Eratosthenes sieve isn’t difficult.


As I said prime numbers are widely used in cryptography, so they are always of a greater interest in computer science. In fact every number can be represented by the product of two prime numbers and that fact is used in cryptography as well. That’s because if we know that number, which is usually very very big, it is still very difficult to find out what are its prime multipliers. Unfortunately the algorithms in this article are very basic and can be handy only if we work with small numbers or if our machines are tremendously powerful. Fortunately in practice there are more complex algorithms for finding prime numbers. Such are the sieves of Euler, Atkin and Sundaram.

Computer Algorithms: Bubble Sort


It’s weird that bubble sort is the most famous sorting algorithm in practice since it is one of the worst approaches for data sorting. Why is bubble sort so famous? Perhaps because of its exotic name or because it is so easy to implement. First let’s take a look on its nature.

Bubble sort consists of comparing each pair of adjacent items. Then one of those two items is considered smaller (lighter) and if the lighter element is on the right side of its neighbour, they swap places. Thus the lightest element bubbles to the surface and at the end of each iteration it appears on the top. I’ll try to explain this simple principle with some pictures.

1. Each two adjacent elements are compared

In bubble sort we've to compare each two adjacent elements
In bubble sort we've to compare each two adjacent elements

Here “2” appears to be less than “4”, so it is considered lighter and it continues to bubble to the surface (the front of the array).
Continue reading Computer Algorithms: Bubble Sort